Code-a-long-1.3

Analyze Data with R

Goals

¢ Continue gaining practice loading and using data sets in R
e Create subsets of data based upon certain conditions (a.k.a. filtering)

e |earn how to generate summary statistics using the group_by/summarize functions

Loading Data

Let's start by reviewing some concepts from the last lesson:

we need to make the tidyverse available with the library function:

library(tidyverse)

— Attaching core tidyverse packages tidyverse 2.0.0 —
v dplyr 1.1.2 v readr 2.1.4

v forcats 1.0.0 v stringr 1.5.0

v ggplot2 3.4.2 v tibble 3.2.1

v lubridate 1.9.2 v tidyr 1.3.0

v purrr 1.0.2

— Conflicts tidyverse_conflicts() —

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to
become errors

load the dataset to a variable
teamAntarcticaData<-read_csv("teamAntarcticaData.csv")

Rows: 75 Columns: 12
— Column specification
Delimiter: ","

chr (7): Timestamp, school, swim, animals, parkaColor, teamFlag, distance
dbl (5): fishing, cold, remote, bedsideManner, cooking

i Use “spec()” to retrieve the full column specification for this data.
i Specify the column types or set "show_col_types = FALSE' to quiet this message.

view it
teamAntarcticaData

A tibble: 75 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 1 Yes 4 Yes 4 Gold Penguin
2 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 5 Blue Bear
3 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 3 Green Penguin
4 8/30/2022 16:0.. Unive.. 1 Yes 1 Yes 1 Blue Seal
5 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 White Sea Spi..
6 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 hot pink Penguin
7 8/30/2022 16:0.. Unive.. 1 Yes 2 Yes 3 Blue Sea Spi..
8 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 4 Blue Penguin
9 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 5 White Bear
10 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin

i 65 more rows
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Sub-setting Data

In the last lesson, we looked at descriptive statistics for columns of data for the entire data set. But what
if we were interested in pursuing answers to specific questions. Here's one:

¢ How does the cold tolerance differ for students at Lewis & Clark vs students at the University of
Arizona?

One strategy we could take is to find the average cold tolerance responses for the LC students, and
compare it to the average of the UA students. So we'll need to create two subsets of the original data
set, using the filter function. The filter function works like this:

mySubset<-filter(.data=myDataFrame, columnName=="some value")
e st argument (.data) - identify the original, unfiltered data set
e 2nd argument - include one or more conditions

Now let’s use the filter function to create a subset of data that only includes University of Arizona
students:

uaStudents<-filter(.data=teamAntarcticaData, school=="University of Arizona")

uaStudents

A tibble: 28 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 1 Yes 4 Yes 4 Gold Penguin
2 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 5 Blue Bear
3 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 3 Green Penguin
4 8/30/2022 16:0.. Unive.. 1 Yes 1 Yes 1 Blue Seal
5 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 White Sea Spi..
6 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 hot pink Penguin

7 8/30/2022 16:0.. Unive.. 1 Yes 2 Yes 3 Blue Sea Spi..

8 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 4 Blue Penguin
9 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 5 White Bear
10 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin

i 18 more rows
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Below, create a subset of Lewis & Clark students, assign it to the variable 1cStudents, and print it to
the screen:

#create 1lcStudents below
lcStudents<-filter(.data=teamAntarcticaData, school=="Lewis & Clark College")

lcStudents

A tibble: 47 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/31/2022 15:2.. Lewis.. 2 Yes 4 Yes 1 White Sea Spi..
2 8/31/2022 15:3.. Lewis.. 1 Yes 3 Maybe 4 Blue Penguin
3 8/31/2022 15:4.. Lewis.. 5 Yes 5 Yes 5 Green Bear
4 8/31/2022 16:0.. Lewis.. 2 Yes 4 Yes 4 Blue Seal
5 8/31/2022 16:3.. Lewis.. 3 Yes 4 Yes 5 Black Penguin
6 8/31/2022 17:0.. Lewis.. 1 Yes 3 Yes 2 Blue Penguin
7 8/31/2022 17:0.. Lewis.. 4 Yes 5 Yes 5 White Sea Spi..
8 8/31/2022 17:0.. Lewis.. 5 Yes 5 Yes 5 Blue Bear
9 8/31/2022 17:0.. Lewis.. 2 Yes 4 Yes 4 Green Penguin
10 8/31/2022 17:0.. Lewis.. 2 Yes 2 Yes 3 Blue Seal

i 37 more rows
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

So now we have two smaller data sets - one with U of A students (uaStudents), and one with LC
students (1cStudents). How might we calculate the average cold tolerance of each? Using strategies
from last week, try doing so below:
mean (uaStudents$cold)
[1] 3.285714

mean(lcStudents$cold)

[1] 3.425532

Relational operators

Inthe filter example above, we used " ==" as part of our condition argument. The double equals is an
example of a relational operator - it's a character (or multiple characters) that represents a logical action

or process. Practically speaking, the double equals means "is this field equal to this value?”. If the
answer is "TRUE", then the row is included as part of the filtered data set.

Here are some other relational operators:

> (greater than)

< (less than)
e <= (less than or equal t0)
e >= (greater than or equal to0)
e !=(not equal to)
In the filter function, relational operators are used to define a condition.

Let's say we're interested in creating a subset of data that includes students with a self-reported
aptitude in fishing of 4 or 5 (the students we should recruit to catch our fish). Create a subset of data
called goodFishing that contains this list, and print to the screen:

create goodFishing below
goodFishing<-filter(.data=teamAntarcticaData, fishing>3)

goodFishing

A tibble: 11 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <dbl> <chr> <dbl> <chr> <db1l> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin
2 8/30/2022 16:1.. Unive.. 5 Yes 4 Maybe 3 White Bear
3 8/30/2022 16:1.. Unive.. 4 Yes 3 Yes 4 Orange Sea Spi..
4 8/30/2022 16:1.. Unive.. 4 Yes 3 Yes 5 Orange Seal
5 8/30/2022 16:1.. Unive.. 4 Yes 4 Yes 5 White Penguin
6 8/31/2022 15:4.. Lewis.. 5 Yes 5 Yes 5 Green Bear
7 8/31/2022 17:0.. Lewis.. 4 Yes 5 Yes 5 White Sea Spi..
8 8/31/2022 17:0.. Lewis.. 5 Yes 5 Yes 5 Blue Bear
9 8/31/2022 20:4.. Lewis.. 5 Yes 3 Yes 4 Black Bear
10 9/1/2022 13:50.. Lewis.. 5 Yes 2 Yes 1 Orange Penguin

11 9/1/2022 19:41.. Lewis.. 5 Yes 4 Yes 5 Orange Sea Spi..
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Let's say we also want to create a subset of data that includes students who are not particularly strong
swimmers. Create a subset of data below called nonSwimmers that include students who did not answer
"Yes" on the swimming question:

create nonSwimmers below

nonSwimmers<-filter(.data=teamAntarcticaData, swim !="Yes")

Logical Operators

There may be cases in which we want to filter our dataset based on more than one condition. In these
cases, we would use logical operators. Maybe we want to find the best University of Arizona chefs, or
the students who want blue or orange parkas. Here are the main logical operators:

e & (and)
e | (or)
Inthe filter function, logical operators are used to join conditions together.
Here's an example of how to use a logical operator with the filter function:
uaChefs<-filter(.data=teamAntarcticaData, school=="University of Arizona" & cooki

uaChefs

A tibble: 16 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <db1l> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 1 Yes 4 Yes 4 Gold Penguin
2 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 5 Blue Bear
3 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 3 Green Penguin
4 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 hot pink Penguin
5 8/30/2022 16:0.. Unive.. 1 Yes 2 Yes 3 Blue Sea Spi..
6 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 4 Blue Penguin
7 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 5 White Bear
8 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin
9 8/30/2022 16:1.. Unive.. 3 Yes 3 Yes 3 Orange Penguin
10 8/30/2022 16:1.. Unive.. 4 Yes 3 Yes 4 Orange Sea Spi..
11 8/30/2022 16:1.. Unive.. 4 Yes 3 Yes 5 Orange Seal
12 8/30/2022 16:1.. Unive.. 1 Yes 4 Yes 3 Black Penguin
13 8/30/2022 16:1.. Unive.. 3 Yes 5 Yes 5 green Sea Spi..
14 8/30/2022 16:1.. Unive.. 2 Yes 2 Yes 4 Black Bear
15 8/30/2022 16:1.. Unive.. 1 Yes 3 Yes 3 Black Penguin
16 8/30/2022 16:3.. Unive.. 2 No 1 Yes 4 White <NA>

i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Below, use the filter function to create a data subset of students who want blue or orange parkas.
Assign it to the variable blueOrangeParkas, and print to the screen.

blueOrangeParkas<-filter(.data=teamAntarcticaData, parkaColor=="Blue" | parkaColc

blueOrangeParkas

A tibble: 32 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 5 Blue Bear
2 8/30/2022 16:0.. Unive.. 1 Yes 1 Yes 1 Blue Seal
3 8/30/2022 16:0.. Unive.. 1 Yes 2 Yes 3 Blue Sea Spi..
4 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 4 Blue Penguin
5 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin
6 8/30/2022 16:1.. Unive.. 3 Yes 3 Yes 3 Orange Penguin
7 8/30/2022 16:1.. Unive.. 4 Yes 3 Yes 4 Orange Sea Spi..
8 8/30/2022 16:1.. Unive.. 4 Yes 3 Yes 5 Orange Seal
9 8/30/2022 16:1.. Unive.. 2 I ca. 5 Yes 4 Blue Penguin
10 8/30/2022 16:1.. Unive.. 2 Yes 3 Yes 3 Blue Penguin

i 22 more rows
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

The "Pipe”

The Tidyverse introduced a new convention to R called the "pipe":

%>%
or

| >

The purpose of the pipe is to string functions and data together. You can think of it as sort of the glue
that joins pieces of an assembly line together. Another way to think of it is to read it as "AND THEN".

Below we can rewrite a command using the filter function with the pipe. After the assignment symbol
(<-) we start with the data set, followed by the pipe, followed by the filter function. What's different
about the arguments in the filter function in this case?

uaStudents2<-teamAntarcticaData |> filter(school=="University of Arizona")

uaStudents?2

A tibble: 28 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <db1l> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 1 Yes 4 Yes 4 Gold Penguin
2 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 5 Blue Bear
3 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 3 Green Penguin
4 8/30/2022 16:0.. Unive.. 1 Yes 1 Yes 1 Blue Seal
5 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 White Sea Spi..
6 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 hot pink Penguin
7 8/30/2022 16:0.. Unive.. 1 Yes 2 Yes 3 Blue Sea Spi..
8 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 4 Blue Penguin

9 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 5 White Bear

10 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin
i 18 more rows
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Try using the pipe in the code chunk below to create a data subset of students who answered “"Maybe”
in the animals question (call the variable maybeAnimals). Print it to the screen as well.

create and print maybeAnimals:

maybeAnimals <-teamAntarcticaData |> filter(animals=="Maybe")

maybeAnimals

A tibble: 8 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <db1l> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:09.. Unive.. 1 Yes 4 Maybe 3 purple Seal
2 8/30/2022 16:10.. Unive.. 171 ca. 3 Maybe 2 Black Penguin
3 8/30/2022 16:10.. Unive.. 5 Yes 4 Maybe 3 White Bear
4 8/31/2022 13:04.. Unive.. 2 Yes 4 Maybe 5 Black Penguin
5 8/31/2022 15:33.. Lewis.. 1 Yes 3 Maybe 4 Blue Penguin
6 8/31/2022 18:57.. Lewis.. 1 Yes 3 Maybe 3 Orange Bear
7 8/31/2022 22:17.. Lewis.. 1 Yes 2 Maybe 4 Blue Penguin
8 8/31/2022 22:23.. Lewis.. 2 Yes 4 Maybe 2 Blue Sea Spi..
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Generating summary statistics with group_by [summarize
One reason for introducing the |> now is because of how instrumental it is for chaining together two
functions for generating summary statistics by group:

e group_by: a function that takes a data set and groups it by a variable/column

e summarize: uses the grouped data set from group_by, and lets you define summary statistics
columns for that group

Let's say we want to calculate the mean and standard deviation of self-reported tolerance for cold,
comparing Lewis & Clark to University of Arizona students. We sort of did this earlier, but let's try it
again using group_by / summarize:

coldSummary<—teamAntarcticaData |>
group_by(school) |>
summarize(avgCold=mean(cold), sdCold=sd(cold))

coldSummary

A tibble: 2 x 3
school avgCold sdCold

<chr> <dbl> <dbl>
1 Lewis & Clark College 3.43 0.950
2 University of Arizona 3.29 1.08

Let's break down what's going on here:

First declare our variable (coldSummary)

Initially assign it to the teamAntarcticaData data set

"Pipe" that data to group_by, where we choose to group the data by the school column

Then “pipe” that to summarize, where we define two new columns:
o avgCold, set equal to mean(cold)
o sdCold, set equal to sd(cold)

When printing out coldSummary, we see it's a new data set with just summary statistics for cold
tolerance, grouped by the school.

Try using the group_by / summarize technique by finding the mean and standard deviation of self-
reported cooking skill, comparing Lewis & Clark to University of Arizona students. Print to the screen.

cookingSummary<- teamAntarcticaData |>
group_by(school) |>
summarize(meanCooking=mean(cooking, na.rm=TRUE),
sdCooking=sd(cooking, na.rm=TRUE))

cookingSummary

A tibble: 2 x 3

school meanCooking sdCooking
<chr> <db1> <db1>
1 Lewis & Clark College 3.13 1.12
2 University of Arizona 3.56 1.09

We can also use this technique to calculate percentage. Let's say we want to know the different
percentage of responses to the swimming question. We can calculate this by first defining the total
number of rows (using nrow, below), and use it with n() in summarize

first calculate total rows, to be used as denominator for percentage
totalRows<-nrow(teamAntarcticaData)

n() generates the count of responses per/group

swimmingPercentage<-teamAntarcticaData |>
group_by(swim) |>
summarise(percent=n()/totalRows*100)

swimmingPercentage

A tibble: 3 x 2

swim percent
<chr> <dbl>
1 I can dog paddle 8
2 No 1.33
3 Yes 90.7

Below, calculate the percentage of responses for each of the different parka colors:

parkaPercentage<-teamAntarcticaData |>
group_by(parkaColor) |>
summarise(percent=n()/totalRows*100)

parkaPercentage

A tibble: 15 x 2

parkaColor percent

<chr> <db1>
1 Baby Pink 1.33
2 Black 24
3 Blue 29.3
4 Gold 1.33
5 Green 5.33
6 Lavender/purple 1.33
7 Orange 13.3
8 Pink 1.33
9 Pink, if possible 1.33
10 Purple 1.33
11 White 14.7
12 green 1.33
13 hot pink 1.33
14 purple 1.33
15 <NA> 1.33

Next: homework-1.3.gmd

https://72f29a80207743d39aecdf0dc039a77b.app.posit.cloud/p/036a835e/homework-1.3.qmd

