
Introduction to R and Data Concepts

Gain some familiarity and comfort with rstudio

Review how to assign variables

Learn about and use functions

Learn about and use vectors

Write code to work with a data set, and calculate some descriptive statistics

The grey rectangle below is a “code chunk”. Everything withing the grey area is interpreted as R code.

To run the code, click the green triangle in the upper-right corner.

In this example, R can perform basic math:

[1] 17

Now it’s your turn. Enter code below to subtract ten from twenty-two:

[1] 12

We’ll be working a lot with variables throughout this semester. A variable is a name you give to some

value. The value could be a single number, a word, a bunch of words, an entire data set, etc.

Most scripting languages use the “=” sign to assign a value to a variable, but R uses “<-”.

It’s important to note that creating a new variable using code above doesn’t give you any output. Often

it’s a good idea to print your variable to the screen, just to confirm it worked the way you intended:

Introduction to R and Data Concepts

Goals

Arithmetic

10+7

22-10

Assigning Variables

assigns 10 to x

x<-10

prints x

[1] 10

Now it’s your turn. Create a variable “y”, set it equal to 7+9, and then print it out:

Coding languages, including R, have functions that help you quickly execute common tasks. Functions

typically take the form of:

functionName(argument1, argument2, etc….)

Arguments are the inputs you send to a function, so it has all the information it needs to perform its

operation.

For example, the function sqrt(number) takes the square root of a number. This lets us quickly

compute the answer, rather than having to write the formula for a square root.

[1] 3

YOUR TURN: In the chunk below, create a variable z , set it equal to the square root of 90, and print it
out:

[1] 9.486833

One nice thing about rstudio is that you can readily access documentation for functions by using the

“help” command:

The documentation appears in the lower right window in the “help” tab.

One key question: how do you know what functions exist, and what they do?

Answer: you Google what you’re trying to do! In the case of R, you might search “How do I do ‘x’ in R?”

x

#Anything preceded by a "#" is a "comment". It does not get executed as code.
#Comments can be super helpful to provide info on your code.

y<-7+9

Functions

sqrt(9)

z<-sqrt(90)

z

help(sqrt)

Let’s say you are interested in calculating the absolute value (positive distance from zero) of -35 in R.

Take a moment with your group/neighbors, and try to find the answer by searching the internet. In the

code chunk below, use the function you found to compute this calculation:

[1] 35

So far we’ve created variables that have single values (e.g. x<-7), but there are often cases where we
need to assign multiple values to a variable. These types of variables are called vectors.

In order to create a vector, you can use the “c” function (c stands for “combine”). Here’s an example:

[1] 3 7 1 10

Now it’s your turn. Create a vector called mySecondVector , assign the values 8, -11, 100, 35 to it, and

print it to the screen:

[1] 8 -11 100 35

Before moving on, let’s talk a little about variable naming conventions. We started out using x , y , and
z when learning about variables. That technically works, but it’s better practice to be more descriptive

in your variable names. The examples above and below use a syntax called “camel case”. This allows

you to string words together without spaces, but preserves quick readability. From this point on, we’re

going to create variables with camel case - you should too!

compute the absolute value of -35

abs(-35)

Vectors

myFirstVector<-c(3,7,1,10)

myFirstVector

use the "c" function to create mySecondVector:

mySecondVector<-c(8,-11,100, 35)

mySecondVector

It may not be immediately clear what the utility of vectors is, so let’s take a look at a practical use case.

Below is a vector containing the responses from you and your classmates (and U of Arizona students)

on self-reported fishing skill (1 being low, 5 being high):

 [1] 1 2 2 1 1 1 1 2 2 5 1 2 2 1 5 3 4 4 4 2 1 2 2 3 2 1 2 2 2 1 5 2 3 1 4 5 2 2
[39] 2 1 1 1 1 2 3 1 1 2 1 3 1 1 1 1 2 2 5 3 1 1 1 1 2 1 3 2 5 1 2 3 3 2 3 5 2

Let’s say we’re interested in finding the average of all the responses. We can do this by use the mean
function in R: (we’ll dive more into descriptive statistics next week, and how they differ from inferential)

[1] 2.146667

We can also calculate the median (the “middle” value, when data is in numerical order) with the median
function:

We can also calculate the standard deviation (a measurement of how spread apart the data is):

fishingSkill<-c(1,2,2,1,1,1,1,2,2,5,1,2,2,1,5,3,4,4,4,2,1,2,2,3,2,1,2,2,2,1,5,2,3

fishingSkill

avgFishingSkill<-mean(fishingSkill)

avgFishingSkill

medianFishingSkill<-median(fishingSkill)

sdFishingSkill<-sd(fishingSkill)

Now it’s your turn. Given the vector below of self-reported cooking skill ranking, calculate its mean,

median, and standard deviation:

[1] 3.302632

[1] 3.5

[1] 1.107787

One of the most common uses of R is to load a data set into R as a variable, and then use that data to

ask and answer questions with code. Let’s start off by loading a package called the Tidyverse. The

Tidyverse is a series of functions written by data scientists to make working with data a little easier. We

can load it by running the following command:

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.2 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.2 ✔ tibble 3.2.1
✔ lubridate 1.9.2 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to
become errors

Notice in the Files tab in the lower-right window, there is a file titled teamAntarcticaData.csv. This is a

copy of the spreadsheet data from the Google form. Below, we can assign the entire data set to a

cookingSkill<-c(4,5,4,1,2,5,4,4,4,4,3,2,2,2,4,4,4,3,3,5,3,3,4,4,5,5,3,4,3,3,4,4,3

calculate the mean

mean(cookingSkill)

#calculate median

median(cookingSkill)

calculate the standard deviation

sd(cookingSkill)

Working with a data set

library(tidyverse)

https://docs.google.com/spreadsheets/d/1GDT4v6cu41-cfhNkzyrrobsuAbhzlW8GEqJxdAJZDLM/edit#gid=1722229028

variable using the read_csv function:

Rows: 75 Columns: 12
── Column specification ──
Delimiter: ","
chr (7): Timestamp, school, swim, animals, parkaColor, teamFlag, distance
dbl (5): fishing, cold, remote, bedsideManner, cooking

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 75 × 12
 Timestamp school fishing swim cold animals remote parkaColor teamFlag
 <chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
 1 8/30/2022 16:0… Unive… 1 Yes 4 Yes 4 Gold Penguin
 2 8/30/2022 16:0… Unive… 2 Yes 4 Yes 5 Blue Bear
 3 8/30/2022 16:0… Unive… 2 Yes 4 Yes 3 Green Penguin
 4 8/30/2022 16:0… Unive… 1 Yes 1 Yes 1 Blue Seal
 5 8/30/2022 16:0… Unive… 1 Yes 3 Yes 3 White Sea Spi…
 6 8/30/2022 16:0… Unive… 1 Yes 3 Yes 3 hot pink Penguin
 7 8/30/2022 16:0… Unive… 1 Yes 2 Yes 3 Blue Sea Spi…
 8 8/30/2022 16:0… Unive… 2 Yes 2 Yes 4 Blue Penguin
 9 8/30/2022 16:0… Unive… 2 Yes 2 Yes 5 White Bear
10 8/30/2022 16:0… Unive… 5 Yes 5 Yes 5 Blue Penguin
ℹ 65 more rows
ℹ 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

Earlier in this exercise we looked at the array of responses for both fishing and cooking aptitude, though

in both cases the vectors were hand-typed (by me). A much more common way to acquire, and then

use, a vector of data is to directly query the data set. You can get a vector (a.k.a. column) of data by

using the following syntax:

dataSet$columnName

Let’s get all responses for fishing aptitude directly from the data set:

#load the data
teamAntarcticaData<-read_csv("teamAntarcticaData.csv")

#print to screen
teamAntarcticaData

#It's also very useful to click the variable name of a dataset in the Environment
#This will open the data in a new tab, and is very easy to read.

fishing<-teamAntarcticaData$fishing

And just like before, we can calculate the mean, median, and standard deviation:

[1] 2.146667

[1] 2

[1] 1.248711

Now it’s your turn:

Use the data set to get the column values for tolerance of cold (hint: after typing the $, use auto-

complete to select the column name). Calculate its mean, median, and standard deviation.

[1] 3.373333

[1] 3

[1] 0.9969322

Now do the same for comfort level with being in a remote location:

mean(fishing)

median(fishing)

sd(fishing)

create a vector that contains the column values for cold tolerance

cold<-teamAntarcticaData$cold

#calculate the mean

mean(cold)

#calculate the median

median(cold)

calculate the standard deviation

sd(cold)

create a vector that contains the column values for comfort level with remote l

remote<-teamAntarcticaData$remote

[1] 3.28

[1] 3

[1] 1.133757

Now create a vector to get the responses for parka color. How is this data different from the other

examples we’ve seen? What can we learn from the data?

 [1] "Gold" "Blue" "Green"
 [4] "Blue" "White" "hot pink"
 [7] "Blue" "Blue" "White"
[10] "Blue" "purple" "White"
[13] "Green" "Black" "White"
[16] "Orange" "Orange" "Orange"
[19] "White" "Blue" "Black"
[22] "Blue" "Pink, if possible" "green"
[25] "Black" "Black" "White"
[28] "Black" "White" "Blue"
[31] "Green" "Blue" "Black"
[34] "Blue" "White" "Blue"
[37] "Green" "Blue" "Black"
[40] "Blue" "Blue" "Black"
[43] "Blue" "Black" "Blue"
[46] "Orange" "Orange" "Blue"
[49] "Orange" "Black" "Black"
[52] "Pink" "Baby Pink" "Blue"
[55] "Lavender/purple" "White" "Black"
[58] "Black" "Blue" "Black"
[61] "Orange" "Blue" "Blue"
[64] "Blue" "Orange" "White"

#calculate the mean

mean(remote)

#calculate the median

median(remote)

calculate the standard deviation

sd(remote)

parkas<-teamAntarcticaData$parkaColor

parkas

[67] "Orange" "Black" NA
[70] "Black" "White" "Black"
[73] "Black" "Orange" "Purple"

Next up: practice-problems-1.2.qmd

https://72f29a80207743d39aecdf0dc039a77b.app.posit.cloud/p/00913366/practice-problems-1.2.qmd

