Introduction to R and Data Concepts

Introduction to R and Data Concepts

Goals

e Gain some familiarity and comfort with rstudio

e Review how to assign variables

Learn about and use functions

Learn about and use vectors

Write code to work with a data set, and calculate some descriptive statistics

Arithmetic

The grey rectangle below is a “code chunk”. Everything withing the grey area is interpreted as R code.
To run the code, click the green triangle in the upper-right corner.

In this example, R can perform basic math:
10+7

[1] 17

Now it's your turn. Enter code below to subtract ten from twenty-two:
22-10

[1] 12

Assigning Variables

We'll be working a lot with variables throughout this semester. A variable is a name you give to some
value. The value could be a single number, a word, a bunch of words, an entire data set, etc.

Most scripting languages use the “=" sign to assign a value to a variable, but R uses "<-".

assigns 10 to x

x<-10

It's important to note that creating a new variable using code above doesn’t give you any output. Often
it's a good idea to print your variable to the screen, just to confirm it worked the way you intended:

prints x

[1] 10

#Anything preceded by a "#" is a "comment". It does not get executed as code.
#Comments can be super helpful to provide info on your code.

Now it's your turn. Create a variable "y" set it equal to 7+9, and then print it out:

y<-7+9

Functions

Coding languages, including R, have functions that help you quickly execute common tasks. Functions
typically take the form of:

functionName(argument1, argument2, etc....)

Arguments are the inputs you send to a function, so it has all the information it needs to perform its
operation.

For example, the function sqrt(number) takes the square root of a number. This lets us quickly
compute the answer, rather than having to write the formula for a square root.

sqrt(9)

(11 3

YOUR TURN: In the chunk below, create a variable z, set it equal to the square root of 90, and print it
out:

z<-sqrt(90)

[1] 9.486833

One nice thing about rstudio is that you can readily access documentation for functions by using the
"help” command:

help(sqrt)

The documentation appears in the lower right window in the "help” tab.

One key question: how do you know what functions exist, and what they do?
Answer: you Google what you're trying to do! In the case of R, you might search “How do | do 'x' in R?"

Let's say you are interested in calculating the absolute value (positive distance from zero) of -35 in R.
Take a moment with your group/neighbors, and try to find the answer by searching the internet. In the
code chunk below, use the function you found to compute this calculation:

compute the absolute value of -35

abs(-35)

[1] 35

Vectors

So far we've created variables that have single values (e.g. x<-7), but there are often cases where we
need to assign multiple values to a variable. These types of variables are called vectors.

In order to create a vector, you can use the “c” function (c stands for “combine”). Here's an example:

myFirstVector<-c(3,7,1,10)

myFirstVector

1] 3 7 1160

Now it's your turn. Create a vector called mySecondVector, assign the values 8, -11, 100, 35 to it, and
print it to the screen:

use the "c" function to create mySecondVector:
mySecondVector<-c(8,-11,100, 35)

mySecondVector

[1] 8 -11 100 35

Before moving on, let's talk a little about variable naming conventions. We started out using x, y, and
z when learning about variables. That technically works, but it's better practice to be more descriptive
in your variable names. The examples above and below use a syntax called “camel case”. This allows
you to string words together without spaces, but preserves quick readability. From this point on, we're
going to create variables with camel case - you should too!

It may not be immediately clear what the utility of vectors is, so let’s take a look at a practical use case.
Below is a vector containing the responses from you and your classmates (and U of Arizona students)
on self-reported fishing skill (1 being low, 5 being high):

fishingSkill<-c(1,2,2,1,1,1,1,2,2,5,1,2,2,1,5,3,4,4,4,2,1,2,2,3,2,1,2,2,2,1,5,2,:
fishingSkill

[1112211112251221534442122321222
391 21111231121311112253111121325

w w
NN
N

Let's say we're interested in finding the average of all the responses. We can do this by use the mean
function in R: (we'll dive more into descriptive statistics next week, and how they differ from inferential)

avgFishingSkill<-mean(fishingSkill)
avgFishingSkill
[1] 2.146667

We can also calculate the median (the “middle” value, when data is in numerical order) with the median
function:

medianFishingSkill<-median(fishingSkill)

We can also calculate the standard deviation (a measurement of how spread apart the data is):

sdFishingSkill<-sd(fishingSkill)

Now it's your turn. Given the vector below of self-reported cooking skill ranking, calculate its mean,
median, and standard deviation:

cookingSkill<-c(4,5,4,1,2,5,4,4,4,4,3,2,2,2,4,4,4,3,3,5,3,3,4,4,5,5,3,4,3,3,4,4,:
calculate the mean

mean (cookingSkill)

[1] 3.302632

#calculate median

median(cookingSkill)
[1] 3.5

calculate the standard deviation

sd(cookingSkill)

[1] 1.107787

Working with a data set

One of the most common uses of R is to load a data set into R as a variable, and then use that data to
ask and answer questions with code. Let's start off by loading a package called the Tidyverse. The
Tidyverse is a series of functions written by data scientists to make working with data a little easier. We
can load it by running the following command:

library(tidyverse)

— Attaching core tidyverse packages tidyverse 2.0.0 —
v dplyr 1.1.2 v readr 2.1.4

v forcats 1.0.0 v stringr 1.5.0

v ggplot2 3.4.2 v tibble 3.2.1

v lubridate 1.9.2 v tidyr 1.3.0

v purrr 1.0.2

— Conflicts tidyverse_conflicts() —

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to
become errors

Notice in the Files tab in the lower-right window, there is a file titled teamAntarcticaData.csv. This is a
copy of the spreadsheet data from the Google form. Below, we can assign the entire data set to a

https://docs.google.com/spreadsheets/d/1GDT4v6cu41-cfhNkzyrrobsuAbhzlW8GEqJxdAJZDLM/edit#gid=1722229028

variable using the read_csv function:

#1load the data
teamAntarcticaData<-read csv('"teamAntarcticaData.csv")

Rows: 75 Columns: 12
— Column specification
Delimiter: ","

chr (7): Timestamp, school, swim, animals, parkaColor, teamFlag, distance
dbl (5): fishing, cold, remote, bedsideManner, cooking

i Use “spec()’ to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE to quiet this message.

#print to screen
teamAntarcticaData

A tibble: 75 x 12

Timestamp school fishing swim cold animals remote parkaColor teamFlag
<chr> <chr> <db1l> <chr> <dbl> <chr> <dbl> <chr> <chr>
1 8/30/2022 16:0.. Unive.. 1 Yes 4 Yes 4 Gold Penguin
2 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 5 Blue Bear
3 8/30/2022 16:0.. Unive.. 2 Yes 4 Yes 3 Green Penguin
4 8/30/2022 16:0.. Unive.. 1 Yes 1 Yes 1 Blue Seal
5 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 White Sea Spi..
6 8/30/2022 16:0.. Unive.. 1 Yes 3 Yes 3 hot pink Penguin
7 8/30/2022 16:0.. Unive.. 1 Yes 2 Yes 3 Blue Sea Spi..
8 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 4 Blue Penguin
9 8/30/2022 16:0.. Unive.. 2 Yes 2 Yes 5 White Bear
10 8/30/2022 16:0.. Unive.. 5 Yes 5 Yes 5 Blue Penguin

i 65 more rows
i 3 more variables: distance <chr>, bedsideManner <dbl>, cooking <dbl>

#It's also very useful to click the variable name of a dataset in the Environment
#This will open the data in a new tab, and is very easy to read.

Earlier in this exercise we looked at the array of responses for both fishing and cooking aptitude, though
in both cases the vectors were hand-typed (by me). A much more common way to acquire, and then
use, a vector of data is to directly query the data set. You can get a vector (a.k.a. column) of data by
using the following syntax:

dataSet$columnName

Let's get all responses for fishing aptitude directly from the data set:

fishing<-teamAntarcticaData$fishing

And just like before, we can calculate the mean, median, and standard deviation:
mean(fishing)

[1] 2.146667
median(fishing)

[1] 2
sd(fishing)

[1] 1.248711

Now it's your turn:

Use the data set to get the column values for tolerance of cold (hint: after typing the $, use auto-
complete to select the column name). Calculate its mean, median, and standard deviation.

create a vector that contains the column values for cold tolerance
cold<-teamAntarcticaData$cold

#calculate the mean

mean(cold)

[1] 3.373333

#calculate the median

median(cold)
[1] 3

calculate the standard deviation

sd(cold)

[1] 0.9969322

Now do the same for comfort level with being in a remote location:

create a vector that contains the column values for comfort level with remote 1

remote<—teamAntarcticaData$remote

#calculate the mean

mean(remote)

[1] 3.28

#calculate the median
median(remote)

[1] 3
calculate the standard deviation

sd(remote)

[1] 1.133757
Now create a vector to get the responses for parka color. How is this data different from the other
examples we've seen? What can we learn from the data?

parkas<—-teamAntarcticaData$parkaColor

parkas

[1] "Gold" "Blue" "Green"
[4] "Blue" "White" "hot pink"
[7] "Blue" "Blue" "White"
[10] "Blue" "purple" "White"
[13] "Green" "Black" "White"
[16] "Orange" "Orange" "Orange"
[19] "White" "Blue" "Black"
[22] "Blue" "Pink, if possible" '"green"
[25] "Black" "Black" "White"
[28] "Black" "White" "Blue"
[31] "Green" "Blue" "Black"
[34] "Blue" "White" "Blue"
[37] "Green" "Blue" "Black"
[40] "Blue" "Blue" "Black"
[43] "Blue" "Black" "Blue"
[46] "Orange" "Orange" "Blue"
[49] "Orange" "Black" "Black"
[52] "Pink" "Baby Pink" "Blue"
[55] "Lavender/purple" "White" "Black"
[58] "Black" "Blue" "Black"
[61] "Orange" "Blue" "Blue"

[64] "Blue" "Orange" "White"

[67] "Orange" "Black" NA
[70] "Black" "White" "Black"
[73] "Black" "Orange" "Purple"

Next up: practice-problems-1.2.gmd

https://72f29a80207743d39aecdf0dc039a77b.app.posit.cloud/p/00913366/practice-problems-1.2.qmd

